Содержание
- 1 Автомат защиты электродвигателя — как правильно подобрать?
- 2 Аварийные ситуации в работе асинхронного двигателя и методы защиты
- 3 Какая защита должна предусматриваться на электродвигателях — Все об электричестве
- 4 Защита электродвигателя: основные виды, схемы подключения и принцип работы. Инструкция как установить своими руками
- 5 Защита электродвигателя автоматическим выключателем. Практические расчеты
- 6 Поддержка
Автомат защиты электродвигателя — как правильно подобрать?
При подборе автоматических выключателей, способных защитить электрические моторы от повреждения в результате КЗ или чрезмерно высоких нагрузок, необходимо учитывать большую величину пускового тока, нередко превышающую номинал в 5-7 раз.
Наиболее мощным стартовым перегрузкам подвержены асинхронные силовые агрегаты, обладающие короткозамкнутым ротором. Поскольку это оборудование широко применяется для работы в производственных и бытовых условиях, то вопрос защиты как самого устройства, так и питающего кабеля очень актуален.
В этой статье речь пойдет о том, как правильно рассчитать и выбрать автомат защиты электродвигателя.
Задачи устройств для защиты электродвигателей
Бытовую электротехнику от пусковых токов большой величины в сетях обычно защищают с помощью трехфазных автоматических выключателей, срабатывающих через некоторое время после того, как величина тока превысит номинальную.
Таким образом, вал мотора успевает раскрутиться до нужной скорости вращения, после чего сила потока электронов снижается. Но защитные устройства, используемые в быту, не имеют точной настройки.
Поэтому выбор автоматического выключателя, позволяющего защитить асинхронный двигатель от перегрузок и сверхтоков короткого замыкания, более сложен.
Современные автоматы для защиты двигателя нередко устанавливаются в общем корпусе с пускателями (так называются коммутационные устройства запуска мотора). Они предназначены для выполнения следующих задач:
- Защита устройства от сверхтока, возникшего внутри мотора или в цепи подачи электропитания.
- Предохранение силового агрегата от обрыва фазного проводника, а также дисбаланса фаз.
- Обеспечение временной выдержки, которая необходима для того, чтобы мотор, вынужденно остановившийся в результате перегрева, успел охладиться.
Управляющая и защитная автоматика для двигателя на видео:
- Отключение установки, если нагрузка перестала подаваться на вал.
- Защита силового агрегата от долгих перегрузок.
- Защита электромотора от перегрева (для выполнения этой функции внутри установки или на ее корпусе монтируются дополнительные температурные датчики).
- Индикация рабочих режимов, а также оповещение об аварийных состояниях.
Необходимо также учитывать, что автомат для защиты электродвигателя должен быть совместим с контрольными и управляющими механизмами.
Расчет автомата для электродвигателя
Еще недавно для защиты электрических моторов использовалась следующая схема: внутри пускателя устанавливался тепловой регулятор, подключенный последовательно с контактором. Этот механизм работал таким образом.
Когда через реле в течение длительного времени проходил ток большой величины, происходил нагрев установленной в нем биметаллической пластины, которая, изгибаясь, прерывала контакторную цепь.
Если превышение установленной нагрузки было кратковременным (как бывает при запуске двигателя), пластинка не успевала нагреться и вызвать срабатывание автомата.
Внутреннее устройство автомата защиты двигателя на видео:
Главным минусом такой схемы было то, что она не спасала агрегат от скачков напряжения, а также дисбаланса фаз.
Сейчас защита электрических силовых установок обеспечивается более точными и современными устройствами, о которых мы поговорим чуть позже.
А теперь перейдем к вопросу о том, как производится расчет автомата, который нужно установить в цепь электромотора.
Чтобы подобрать защитный автоматический выключатель для электроустановки, необходимо знать его времятоковую характеристику, а также категорию. Времятоковая характеристика от номинального тока, на который рассчитан АВ, не зависит.
Чтобы автоматический выключатель не срабатывал каждый раз при запуске мотора, величина пускового тока не должна быть больше той, которая вызывает моментальное срабатывание аппарата (отсечка). Соотношение тока запуска и номинала прописывается в паспорте оборудования, максимально допустимое – 7/1.
Производя расчет автомата практически, следует использовать коэффициент надежности, обозначаемый символом Kн.
Если номинальный ток устройства не превышает 100А, то величина Kн составляет 1,4; для больших значений она равна 1,25.
Исходя из этого, значение тока отсечки определяется по формуле Iотс ≥ Kн х Iпуск. Автоматический выключатель выбираем в соответствии с рассчитанными параметрами.
Еще одна величина, которую необходимо учитывать при подборе, когда автомат монтируется в электрощитке или специальном шкафу – температурный коэффициент (Кт). Это значение составляет 0,85, и номинальный ток защитного устройства при подборе следует умножать на него (In/Кт).
Современные устройства электрозащиты силовых агрегатов
Большой популярностью пользуются модульные мотор-автоматы, представляющие собой универсальные устройства, которые успешно справляются со всеми функциями, описанными выше.
Кроме этого, с их помощью можно производить регулировку параметров отключения с высокой точностью.
Современные мотор-автоматы представлены множеством разновидностей, отличающихся друг от друга по внешнему виду, характеристикам и способу управления.
Как и при подборе обычного аппарата, нужно знать величину пускового, а также номинального тока. Кроме этого, надо определиться, какие функции должно выполнять защитное устройство. Произведя нужные расчеты, можно покупать мотор-автомат.
Цена этих устройств напрямую зависит от их возможностей и мощности электрического мотора.
Особенности защиты электрических двигателей в производственных условиях
Нередко при включении устройств, мощность которых превышает 100 кВт, напряжение в общей сети падает ниже минимального.
При этом отключения рабочих силовых агрегатов не происходит, но количество их оборотов снижается. Когда напряжение восстанавливается до нормального уровня, мотор начинает заново набирать обороты.
При этом его работа происходит в режиме перегрузки. Это называется самозапуском.
Самозапуск иногда становится причиной ложного срабатывания АВ.
Это может произойти, когда до временного падения напряжения установка в течение длительного времени работала в обычном режиме, и биметаллическая пластина успела прогреться.
В этом случае тепловой расцепитель иногда срабатывает раньше, чем напряжение нормализуется. Пример падения напряжения в электросети автомобиля на следующем видео:
Чтобы предотвратить отключение мощных заводских электромоторов при самозапуске, используется релейная защита, при которой в общую сеть включаются токовые трансформаторы.
К их вторичным обмоткам подключаются защитные реле. Эти системы подбираются методом сложных расчетов.
Приводить здесь мы их не будем, поскольку на производстве эту задачу выполняют штатные энергетики.
Заключение
В этом материале мы подробно осветили тему защитных устройств для электрических двигателей, и разобрались с тем, как подобрать автомат для электромотора и какие параметры при этом должны быть учтены.
Наши читатели могли убедиться, что расчеты, которые производятся при этом, совсем несложны, а значит, подобрать аппарат для сети, в которую включен не слишком мощный силовой агрегат, вполне можно самостоятельно.
Источник: https://YaElectrik.ru/jelektroshhitok/avtomat-zashhity-elektrodvigatelya
Аварийные ситуации в работе асинхронного двигателя и методы защиты
Асинхронный двигатель является наиболее надёжным из всех электродвигателей. Он просто устроен, поэтому при правильной эксплуатации может прослужить очень долго.
Но чтобы это произошло, потребуется защита от тех или иных проблем, которые могут сократить срок его службы.
Если случается аварийный режим необходимо своевременно и быстро отключить электродвигатель, чтобы авария не получила разрушительного развития.
Наиболее распространёнными аварийными ситуациями и соответствующими им видами защиты являются:
- Короткие замыкания. В такой ситуации превышение заданных величин токов в обмотках должно вызвать срабатывание защиты, которая выполнит отключение от сети.
- Перегрузка, в результате которой температура всего движка увеличивается.
- Проблемы с напряжением, которое либо уменьшается, либо пропадает.
- Исчезновение напряжения на одной из фаз.
В схемах защиты используются плавкие предохранители, реле и магнитные пускатели с автоматическими выключателями.
Схема может быть построена таким образом, что будет выполняться сразу несколько видов защиты асинхронного двигателя.
Например, могут быть использованы автоматические выключатели с коммутациями и при перегрузках, и при коротких замыканиях. Плавкие предохранители имеют одноразовое действие и требуют вмешательства оператора для замены.
Реле и магнитные пускатели срабатывают многократно, но могут отличаться по способу восстановления исходного состояния. Для них возможен либо автоматический самовозврат, либо установка вручную. Защиту надо выбирать, основываясь на:
- предназначении привода, в котором работает асинхронный двигатель;
- электромеханических параметрах привода;
- условиях окружающей среды;
- возможности обслуживания персоналом.
- Главными качествами защиты должна быть простота в эксплуатации и надёжность.
Любой асинхронный двигатель должен иметь защиту от коротких замыканий. При этом она должна быть спроектирована и настроена с учётом тока пуска и торможения, которые могут превышать номинальный ток почти в десять раз. Но необходимо учитывать и возможность замыканий в обмотке движка в разных местах.
При таких ситуациях защитное срабатывание должно произойти при величине тока меньшей, чем при пуске асинхронного двигателя. Поскольку такие требования противоречат друг другу защиту приходится делать с задержкой отключения.
Если за это время ток, который двигатель потребляет из сети, существенно увеличится, она сработает.
Требования к защите при коротких замыканиях в асинхронных двигателях заложены в ПУЭ, которые требуют следующее (показано на изображении ниже).
- Место установки – перед зажимами движка на ответвлении к нему.
- Надёжное отключение при коротких замыканиях на его зажимах.
Точки на изображении:
- К1 – однофазное замыкание на землю в сетях с заземлением нейтрали;
- К2 – двухфазное замыкание;
- К3 – трёхфазное короткое замыкание.
Ток перегрузки движка надо учитывать только в тех приводах, в которых возможны нарушения нормального технологического процесса с большими внешними усилиями, приложенными к валу. При этом надо учитывать перегрузочную способность электродвигателя.
Если защита от перегрузки срабатывает слишком часто, вероятнее всего то, что мощность движка не соответствует назначению.
В таких случаях недопустимы ложные срабатывания, которые устраняются правильным выбором и качественной регулировкой компонентов защиты.
Короткие замыкания и защита от перегрузок
Простейшая защита от замыканий содержит только плавкие предохранители. Они применяются в диапазоне мощностей двигателей до 100 кВт.
Однако при их использование возможно перегорание не всех трёх предохранителей. Поэтому движок может искусственно оказаться с одной или двумя отключенными фазными обмотками.
В зависимости от назначения электропривода существуют разные критерии выбора предохранителей.
Если у привода нагрузка вентиляторного типа, для которой характерен лёгкий пуск, номинальный ток плавкой вставки выбирается не менее 40% от величины пускового тока. Этот критерий применим для металлорежущих станков, вентиляторов, насосов и т.п.
у которых переходный процесс длится от двух до пяти секунд. Если время переходного процесса более длительное от десяти до двадцати секунд номинальный ток плавкой вставки должен быть не менее 50% от величины пускового тока. Этот критерий применим для приводов с валом заторможенных нагрузкой.
К ним можно отнести дробилки, центрифуги, шаровые мельницы.
Если имеется группа из нескольких электродвигателей, предохранители ставятся на каждый из них и на распределительный щит.
На нём в каждой фазе устанавливается предохранитель с номинальным током равным сумме номинальных токов предохранителей всех движков.
Если величина пускового тока не известна, а мощность Р асинхронного двигателя менее 100 кВт, можно выбрать приблизительное значение номинального тока I предохранителя таким способом:
- при напряжении 500 Вольт I=4,5Р;
- при напряжении 380 Вольт I=6Р;
- при напряжении 220 Вольт I=10,5Р.
Для более точного срабатывания и для всего диапазона мощностей асинхронных двигателей применяются схемы защиты с реле. Такие схемы позволяют учесть токи пуска и торможения и не реагировать на них.
Срабатывание реле приводит к выключению магнитного пускателя и обесточиванию двигателя.
Эти так называемые «максимальные» реле в зависимости от конструкции имеют катушку, рассчитанную на токи от десятых долей Ампера до сотен Ампер, а так же контакты, отключающие ток в катушке магнитного пускателя.
Погрешность их срабатывания обычно не превышает десяти процентов. Возврат в исходное состояние конструктивно наиболее часто сделан вручную. Типовая схема защиты показана на изображении. РМ – обозначения максимальных реле, Л – обозначение магнитного пускателя.
Максимальные реле также применяются и для защиты от перегрузки. Но при этом в схему вводится реле времени, которое позволяет сделать настройку её без учёта пусковых токов.
Тепловая защита
Тепловое реле является альтернативным способом защиты электродвигателя с определённой инерцией срабатывания.
Принцип действия основан на использовании биметаллической пластины, которая нагревается током обмоток двигателя.
Деформация пластины приводит к срабатыванию контактов, необходимых для отключения движка.
Надёжность такой защиты зависит от подобия тепловых процессов в реле и в двигателе. Такое возможно только при достаточно длительном перерыве между включениями и выключениями движка. Условия окружающей среды для двигателя и для элементов тепловой защиты должны быть одинаковыми.
Скорость срабатывания тепловых реле тем меньше, чем больше ток, протекающий через нагревательные элементы или же саму пластину в зависимости от конструкции.
При больших значениях токов в обмотках асинхронного двигателя подключение выполняется с использованием трансформаторов тока.
Существуют модели магнитных пускателей со встроенными в них тепловыми реле.
Основными электрическими параметрами являются
- номинальное напряжение. Это максимальное напряжение в сети допустимое для использования реле.
- Номинальный ток, при котором реле работает длительно и не срабатывает при этом.
Тепловая защита не способна реагировать на токи короткого замыкания и недопустимые кратковременные перегрузки. Поэтому её надо использовать совместно хотя бы с плавкими предохранителями.
Более совершенной разновидностью защиты электродвигателя от недопустимого нагрева является схема с использованием специального датчика тепла.
Такой тепловой сенсор располагается на самом движке в том или ином месте.
Некоторые модели двигателей имеют встроенный биметаллический сенсор – контакт, подключаемый к защите.
Понижение напряжения и пропадание фазы
Полностью нагруженный асинхронный двигатель, работающий при пониженном напряжении, быстро нагревается. Если в нём есть встроенный тепловой сенсор, сработает тепловая защита.
Если такового нет, необходима защита от понижения напряжения. Для этих целей служат реле, которые срабатывают при снижении напряжения и подают сигнал на отключение движка.
На схеме ниже это РН.
Восстановление исходного состояния защиты обычно выполняется вручную или автоматически, но с задержкой во времени для каждого двигателя при их группе. Иначе одновременный групповой запуск после восстановления опять-таки может вызвать повторное понижение напряжения в сети и новое отключение.
Специальная защита от пропадания фазы, то есть от работы только на двух фазах ПУЭ предусматривает только в таких приводах, где возможны неприемлемые по своей тяжести последствия. Экономически целесообразно не изготовление и установка такой защиты, а ликвидация причин, приводящих к такому режиму работы.
Самыми последними техническими решениями в построении защиты электродвигателей являются автоматические выключатели с воздушным гашением дуги.
Некоторые модели совмещают в себе возможности рубильника, контактора, максимального и теплового реле и выполняют соответствующие защитные функции. В таком автомате контакты размыкаются мощной взведенной пружиной.
Освобождение её происходит в зависимости от типа исполнительного элемента — электромагнитного или теплового.
Источник: http://podvi.ru/elektrodvigatel/zashhita-asinxronnogo-dvigatelya.html
Какая защита должна предусматриваться на электродвигателях — Все об электричестве
Асинхронный двигатель является наиболее надёжным из всех электродвигателей. Он просто устроен, поэтому при правильной эксплуатации может прослужить очень долго.
Но чтобы это произошло, потребуется защита от тех или иных проблем, которые могут сократить срок его службы.
Если случается аварийный режим необходимо своевременно и быстро отключить электродвигатель, чтобы авария не получила разрушительного развития.
Наиболее распространёнными аварийными ситуациями и соответствующими им видами защиты являются:
- Короткие замыкания. В такой ситуации превышение заданных величин токов в обмотках должно вызвать срабатывание защиты, которая выполнит отключение от сети.
- Перегрузка, в результате которой температура всего движка увеличивается.
- Проблемы с напряжением, которое либо уменьшается, либо пропадает.
- Исчезновение напряжения на одной из фаз.
В схемах защиты используются плавкие предохранители, реле и магнитные пускатели с автоматическими выключателями.
Схема может быть построена таким образом, что будет выполняться сразу несколько видов защиты асинхронного двигателя.
Например, могут быть использованы автоматические выключатели с коммутациями и при перегрузках, и при коротких замыканиях. Плавкие предохранители имеют одноразовое действие и требуют вмешательства оператора для замены.
Реле и магнитные пускатели срабатывают многократно, но могут отличаться по способу восстановления исходного состояния. Для них возможен либо автоматический самовозврат, либо установка вручную. Защиту надо выбирать, основываясь на:
- предназначении привода, в котором работает асинхронный двигатель;
- электромеханических параметрах привода;
- условиях окружающей среды;
- возможности обслуживания персоналом.
- Главными качествами защиты должна быть простота в эксплуатации и надёжность.
Любой асинхронный двигатель должен иметь защиту от коротких замыканий. При этом она должна быть спроектирована и настроена с учётом тока пуска и торможения, которые могут превышать номинальный ток почти в десять раз. Но необходимо учитывать и возможность замыканий в обмотке движка в разных местах.
При таких ситуациях защитное срабатывание должно произойти при величине тока меньшей, чем при пуске асинхронного двигателя. Поскольку такие требования противоречат друг другу защиту приходится делать с задержкой отключения.
Если за это время ток, который двигатель потребляет из сети, существенно увеличится, она сработает.
Требования к защите при коротких замыканиях в асинхронных двигателях заложены в ПУЭ, которые требуют следующее (показано на изображении ниже).
- Место установки – перед зажимами движка на ответвлении к нему.
- Надёжное отключение при коротких замыканиях на его зажимах.
Точки на изображении:
- К1 – однофазное замыкание на землю в сетях с заземлением нейтрали;
- К2 – двухфазное замыкание;
- К3 – трёхфазное короткое замыкание.
Ток перегрузки движка надо учитывать только в тех приводах, в которых возможны нарушения нормального технологического процесса с большими внешними усилиями, приложенными к валу. При этом надо учитывать перегрузочную способность электродвигателя.
Если защита от перегрузки срабатывает слишком часто, вероятнее всего то, что мощность движка не соответствует назначению.
В таких случаях недопустимы ложные срабатывания, которые устраняются правильным выбором и качественной регулировкой компонентов защиты.
Защита электродвигателя: основные виды, схемы подключения и принцип работы. Инструкция как установить своими руками
Наверно все знают, что различные устройства работают на основе электрических двигателей. Но для чего нужна защита электродвигателей осознает лишь малая часть пользователей. Оказывается они могут сломаться в результате различных непредвиденных ситуаций.
Чтобы избежать проблем с высокими затратами на ремонт, неприятных простоев и дополнительных материальных потерь используются качественные защитные устройства. Далее разберемся в их устройстве и возможностях.
Как создается защита для электродвигателя?
Постепенно рассмотрим основные устройства защиты электродвигателей и особенности их эксплуатации. Но сейчас расскажем об трех уровнях защиты:
- Внешняя версия защиты для предохранения от короткого замыкания. Обычно относится к разным видам либо представлена в виде реле. Они обладают официальным статусом и обязательны к установке согласно нормам безопасности на территории РФ.
- Внешняя версия защиты электродвигателей от перегрузки помогает предотвратить опасные повреждения либо критические сбои в процессе работы.
- Встроенный тип защиты спасет в случае заметного перегрева. И это защитит от критических повреждений либо сбоев в процессе эксплуатации. В этом случае обязательны выключатели внешнего типа иногда применяется реле для перезагрузки.
Из-за чего отказывает электродвигатель?
В процессе эксплуатации иногда появляются непредвиденные ситуации, останавливающие работу двигателя. Из-за этого рекомендуется заранее обеспечить надежную защиту электродвигателя.
Можете ознакомиться с фото защиты электродвигателя различного типа чтобы иметь представление о том, как она выглядит.
Рассмотрим случаи отказа электродвигателей в которых с помощью защиты можно избежать серьезных повреждений:
- Недостаточный уровень электрического снабжения;
- Высокий уровень подачи напряжения;
- Быстрое изменение частоты подачи тока;
- Неправильный монтаж электродвигателя либо хранения его основных элементов;
- Увеличение температуры и превышение допустимого значения;
- Недостаточная подача охлаждения;
- Повышенный уровень температуры окружающей среды;
- Пониженный уровень атмосферного давления, если эксплуатация двигателя происходит на увеличенной высоте на основе уровня моря;
- Увеличенная температура рабочей жидкости;
- Недопустимая вязкость рабочей жидкости;
- Двигатель часто выключается и включается;
- Блокирование работы ротора;
- Неожиданный обрыв фазы.
Чтобы защита электродвигателей от перегрузки справилась с перечисленными проблемами и смогла защитить основные элементы устройства необходимо использовать вариант на основе автоматического отключения.
Часто для этого используется плавкая версия предохранителя, поскольку она отличается простотой и способна выполнить много функций:
Версия на основе плавкого предохранительного выключателя представлена аварийным выключателем и плавким предохранителем, соединенных на основе общего корпуса.
Выключатель позволяет размыкать либо замыкать сеть с помощью механического способа, а плавкий предохранитель создает качественную защиту электродвигателя на основе воздействия электрического тока.
Однако выключателем пользуются в основном для процесса сервисного обслуживания, когда необходимо остановить передачу тока.
Плавкие версии предохранителей на основе быстрого срабатывания считаются отличными защитниками от коротких замыканий. Но непродолжительные перегрузки могут привести к поломке предохранителей этого вида. Из-за этого рекомендуется использовать их на основе воздействия незначительного переходного напряжения.
Плавкие предохранители на основе задержки срабатывания способны защитить от перегрузки либо различных коротких замыканий. Обычно они способны выдержать 5-краткое увеличение напряжения в течение 10-15 секунд.
Важно: Автоматические версии выключателей отличаются по уровню тока для срабатывания. Из-за этого лучше использовать выключатель способный выдержать максимальный ток в процессе короткого замыкания, появляющегося на основе данной системы.
Тепловое реле
В различных устройствах используется тепловое реле для защиты двигателя от перегрузок под воздействием тока либо перегрева рабочих элементов.
Оно создается с помощью металлических пластин, обладающих различным коэффициентом расширения под воздействием тепла.
Обычно его предлагают в связке с магнитными пускателями и автоматической защитой.
Автоматическая защита двигателя
Автоматы для защиты электродвигателей помогают обезопасить обмотку от появления короткого замыкания, защищают от нагрузки либо обрыва любой из фаз.
Их всегда используют в качестве первого звена защиты в сети питания мотора.
Потом используется магнитный пускатель, если необходимо он дополняется тепловым реле.
Каковы критерии выбора, подходящего автомата:
- Необходимо учитывать величину рабочего тока электродвигателя;
- Количество, использующихся обмоток;
- Возможность автомата справляться с током в результате короткого замыкания. Обычные версии работают на уровне до 6 кА, а лучшие до 50 кА. Стоит учитывать и скорость срабатывания у селективных менее 1 секунды, нормальных меньше 0,1 секунды, быстродействующих около 0,005 секунды;
- Размеры, поскольку большая часть автоматов можно подключать с помощью шины на основе фиксированного типа;
- Вид расцепления цепи — обычно применяется тепловой либо электромагнитный способ.
Универсальные блоки защиты
Различные универсальные блоки защиты электродвигателей помогают уберечь двигатель с помощью отключения от напряжения либо блокированием возможности запуска.
Они срабатывают в таких случаях:
- Проблемы с напряжением, характеризующиеся скачками в сети, обрывами фаз, нарушением чередования либо слипания фаз, перекосом фазного или линейного напряжения;
- Механической перегруженности;
- Отсутствие крутящего момента для вала ЭД;
- Опасных эксплуатационной характеристике изоляции корпуса;
- Если произошло замыкание на землю.
Хотя защита от понижения напряжения, может быть, организована и другими способами мы рассмотрели основные из них. Теперь у вас есть представление о том зачем необходимо защищать электродвигатель, и как это осуществляется с помощью различных способов.
Фото защиты электродвигателя
Источник: http://electrikmaster.ru/zashhita-elektrodvigatelya/
Защита электродвигателя автоматическим выключателем. Практические расчеты
Особенностью защиты электродвигателя от перегрузок и короткого замыкания является повышенный пусковой ток, который может в семь раз превышать номинальное значение.
Самые сильные перегрузки на старте свойственны асинхронным двигателям с короткозамкнутым ротором, которые наиболее используемые в быту и на производстве, поэтому правильная их защита, а также предохранение электропроводки цепей питания электродвигателей являются особенно актуальными.
В бытовой электротехнике проблема с большими стартовыми токами электродвигателей решена при помощи автоматических выключателей, у которых отключение (отсечка) происходит не сразу после превышения номинального тока, а спустя некоторое время.
Данного отрезка времени, который зависит от время-токовой характеристики защитного автомата, должно хватить, чтобы вал двигателя раскрутился до рабочих оборотов, и потребление тока снизилось до номинального уровня. Но автоматические выключатели не обладают гибкостью точной настройки, поэтому для защиты электрических двигателей применяются специальные защитные устройства.
Обычный трехфазный автоматический выключатель часто используется для защиты электродвигателей
Функции защитных устройств электродвигателей
Современные защитные устройства, или другими словами, автоматы защиты электродвигателя, (мотор автоматы), часто совмещаются в одном корпусе с коммутационными аппаратами запуска (пускателями) и выполняют такие функции:
- Защита от тока короткого замыкания в цепи питания или внутри электродвигателя;
- Защита от длительных перегрузок, связанных с превышением механической нагрузки на валу двигателя;
- Предохранение от асимметрии (дисбаланса) фаз, или обрыва фазного провода;Современные мотор автоматы с ручным управлением
- Тепловая защита от перегрева двигателя, осуществляемая при помощи дополнительных термодатчиков, установленных на кожухе или внутри электродвигателя;
- Предохранение от некачественного напряжения;
- Обеспечение выдержки времени для охлаждения двигателя после его аварийной остановки после перегрева;
- Индикация режимов работы и аварийных состояний;
- Опционально – отключение при исчезновении нагрузки на валу (например, для водяных насосов);
- Совместимость с автоматическими системами контроля и управления.
Мотор автомат с ручной настройкой и автоматическим управлением
Ранее и до недавнего времени наиболее используемой схемой защиты электродвигателей было подключение в корпусе пускателя теплового реле, последовательно с контактором.
Биметаллическая пластина теплового реле при длительной перегрузке нагревается и прерывает цепь самоподхвата контактора. Кратковременное превышение номинальной нагрузки при запуске мотора является недостаточным для нагрева и срабатывания биметаллической пластины.
Более подробно о тепловом реле и его подключении можно прочитать в соответствующем разделе данного ресурса.
Контактор электромотора с тепловым реле
Подбор автоматического выключателя
Поскольку первые две функции могут осуществляться обычными автоматическими выключателями, многие пользователи применяют их для защиты своих электродвигателей.
Основным недостатком такого способа является отсутствие защиты от дисбаланса, обрыва фаз и скачков напряжения.
Выбор защитного автомата осуществляется по его время токовой характеристике и по максимальному пусковому току электродвигателя.
Трехфазный автоматический выключатель
Чтобы правильно подобрать автоматический выключатель по категории и номинальному току, нужно изучить его время токовую характеристику, о которой подробно рассказывается на одной из страниц данного сайта.
Категории автоматов (А, B, C, D) определяются соотношением тока отсечки электромагнитного расцепителя к номинальному значению. Нужно иметь в виду, что время токовая характеристика категории не зависит от номинала автоматического выключателя.
Времятоковая характеристика автоматических выключателей категории «C»
Если известна только мощность электродвигателя, то рассчитать номинальный ток можно по формуле In= Рn/(Un*√3*η*cosφ), где Рn – мощность, Un – напряжение, η – КПД, cosφ – коэффициент реактивной мощности двигателя.
Бирка двигателя с указанием мощности
Практические расчеты
На практике применяют поправочный коэффициент надежности Kн, который для автоматов с In100A принимают Kн=1,25. Поэтому должно соблюдаться условие Iмгн.ср ≥ Kн * Iпуск.
Вначале автомат выбирают, исходя из наиболее близкого значения номинального тока автоматического выключателя IAB (указывается на корпусе) к рабочему току двигателя (In).
Необходимое условие: IAB > In/Кт, где Кт = 0,85 – температурный коэффициент, если автомат устанавливается в шкафу или щитке, иначе Кт=1.
Например, имеется двигатель мощностью 5,5 кВт, η = 85%=0,85; cosφ = 0,8; Iпуск/ In = 7. Вначале нужно рассчитать In = Рn/(Un*√3*η*cosφ) = 5500/(380*√3*0,85*0,8) = 12,28 (А).
Допустим, автомат устанавливается в шкаф, Кт = 0,85, значит In/Кт = 12,28/0,85 = 14,44 (А).
Наиболее близким является автоматический выключатель на 16А, категории С, (ток мгновенного срабатывания в десять раз превышает номинальное значение).
При расчетах понадобится калькулятор
Теперь нужно проверить условие Iмгн.ср ≥ Kн * Iпуск. Мгновенное срабатывание защитного автомата наступает при Iмгн.ср = 16*10 = 160 (A), пусковой ток Iпуск= In*7 = 12,28*7 = 85,96 (А).
Умножаем на Kн (1,4) — 85,96*1,4 = 120,3 (А). Проверяем условие 160 ≥ 120,3 — это значит, что автомат выбран верно.
Для упрощенных расчетов, можно принимать номинальный ток двигателя, равным удвоению его мощности, выраженной в киловаттах.
Современная электрозащита двигателей
На рынке электротехнического оборудования все большую популярность набирает защита электродвигателя при помощи универсальных защитных устройств, так называемых мотор автоматов, которые выполняют все приведенные выше защитные функции. Данные устройства имеют модульную конструкцию и устанавливаются на DIN рейку и управляют работой силовых контакторов. Кроме приведенных функций, некоторые мотор автоматы позволяют точно регулировать различные параметры защитного отключения.
Мотор автомат с датчиками — катушками тока
Существует много разновидностей современных мотор автоматов, которые различаются коммутируемой мощностью, набором функций, способом управления, схемой подключения и внешним видом. Чтобы выбрать подходящий аппарат защиты для конкретного двигателя, необходимо знать его параметры номинального и пускового тока, а также нужно определиться с требуемым набором защитных функций и опций.
Стоимость мотор автоматов прямо пропорциональна мощности электродвигателя и функциональным защитным возможностям. Мировыми лидерами по производству защитных мотор автоматов являются такие известные бренды: Schneider Electric, ABB, IEK, Novatek electro, и другие.
Разнообразие представленных на рынке устройств защиты электродвигателей
Приведенный на рисунке ниже автомат защиты двигателя (универсальный блок) позволяет настраивать номинальный и пусковой ток электродвигателя, допустимые пороги напряжения, может отслеживать механическую нагрузку на валу электромотора. Также осуществляется контроль за качеством изоляции обмоток электродвигателя с возможностью установки запрета на включение.
Постоянный мониторинг множества параметров работы позволяет продлить срок эксплуатации двигателя и приводимого в действие оборудования. Специальный дополнительный блок обмена информацией позволяет подключить устройство к автоматическим системам контроля.
Универсальный блок защиты
Защита электромоторов на производстве
Очень часто, в момент включения мощных потребителей электроэнергии (P>100кВт) на мощных производствах во всей электросети, подключенной к трансформаторной подстанции, напряжение опускается ниже установленного минимума.
При данном кратковременном падении напряжения рабочие электромоторы не отключаются, но теряют обороты. При возобновлении нормального напряжения двигатель снова начинает набирать обороты, то есть работать в режиме запуска (перегрузки). Данное явление называют самозапуском.
Изменения скоростей двигателя в разных режимах самозапуска
Если биметаллическая пластина автоматического выключателя или термореле была достаточно прогрета из-за продолжительной нормальной работы электромотора, то в режиме самозапуска тепловой расцепитель может сработать, вызвав ложное срабатывание.
Для мощных электродвигателей на предприятиях для поддержания нормального режима работы, в том числе и после самозапуска, применяют релейную защиту с трансформаторами тока, включенными в цепь питания.
Схема релейной защиты электродвигателя
Отклонения от нормы в силовых проводах электродвигателя с подключенными последовательно первичными обмотками токовых трансформаторов используются для срабатывания защитных реле, которые подключатся к вторичным обмоткам токовых трансформаторов по специальным схемам. Сложные расчеты данных мощных систем защиты осуществляются штатными сотрудниками, заведующими энергоснабжением предприятия, поэтому теория производственной электротехники не входит в тему данной статьи.
Источник: http://infoelectrik.ru/elektrodvigateli/avtomat-zashhity-dvigatelya.html
Поддержка
В электродвигателях, как и в многих других электротехнических, устройствах, могут возникать аварийные ситуации. Если вовремя не принять меры, то в худшем случае, из-за поломки электродвигателя, могут выйти из строя и другие элементы энергосистемы.
Для повышения ресурса безаварийной работы двигателя и повышения эксплуатационной надежности, концерн Русэлпром предлагает использовать защиту двигателей.
Применение защиты удорожает двигатель, поэтому выбор типа и количества защит определяется не только технической, но и экономической целесообразностью их установки. Правильный выбор защиты двигателя позволяет получить необходимый эффект с обоснованными затратами.
Как правило, для двигателей напряжением до 1000 Вт предусматривается:
- защита от коротких замыканий;
- защита от перегрузки.
Короткое замыкание в электродвигателе может привести к росту тока, более чем в 12 раз в течение очень короткого промежутка времени (около 10 мс). Для защиты двигателей от коротких замыканий должны применяться предохранители или автоматические выключатели.
Защита от перегрузки устанавливается в тех случаях, когда возможна перегрузка механизма по технологическим причинам, а также при тяжелых условиях пуска и для ограничения длительности пуска при пониженном напряжении.
Для защиты двигателя от перегрузки используется:
- Тепловая защита;
- Температурная защита;
- Максимально токовая защита;
- Минимально токовая защита;
- Фазочувствительная защита.
Температурная защита
Наиболее эффективной защитой двигателей является температурная защита.
Температурная защита реагирует на увеличение температуры наиболее нагретых частей двигателя с мощью встроенных температурных датчиков и через устройства температурной защиты воздействует на цепь управления контактора или пускателя и отключает двигатель.
Любой двигатель производства концерна «Русэлпром» по заказу потребителя может быть укомплектован встроенными температурными датчиками для защиты двигателей в аварийных режимах, следствием которых может быть нагрев обмотки до недопустимой температуры.
В качестве датчиков используются полупроводниковые терморезисторы с положительным температурным коэффициентом — позисторы.
Датчики встраиваются в лобовые части обмотки статора со стороны противоположной вентилятору наружного обдува по одному в каждую фазу, соединяются последовательно.
Концы цепи датчиков выводятся на специальные клеммы в коробке выводов. К этим клеммам подключают реле или иной аппарат, реагирующий на сигнал датчиков.
Датчики реагируют только на температуру, и их действие не зависит от причин возникновения опасного нагрева.
Поэтому такая система обеспечивает защиту двигателя как в режимах с медленным нагреванием (перегрузка, работа на двух фазах), так и в режимах с быстрым нагреванием (заклинивание ротора, выход из строя подшипников и другое).
Согласно требованиям ГОСТ 27895 (МЭК 60034$11) температура срабатывания защиты должна соответствовать значениям, приведенным в таблице.
Пороги термозащиты
B | F | H | |
Установившийся (Предельно допустимое среднее значение) | 120 | 140 | 165 |
Медленной нагревание (Срабатывание защиты) | 145 | 170 | 195 |
Быстрое нагревание (Срабатывание защиты) | 200 | 225 | 250 |
Характеристики датчиков температурной защиты
Двигатели с датчиками температурной защиты имеют встроенные в каждую фазу обмотки и соединённые последовательно терморезисторы типа СТ14-2-145 по ТУ11-85 ОЖО468.165ТУ или другие терморезисторы с аналогичными параметрами.
В вводном устройстве двигателей предусмотрены клеммы для подсоединения цепи терморезисторов к исполнительному устройству температурной защиты.
Температура срабатывания датчиков температурной защиты:
В | CТ-14А-2-130 | 130 |
F | CТ-14А-2-145 | 145 |
H | CТ-14А-2-160 | 160 |
Срабатывание температурной защиты происходит при возрастании температуры обмотки до значения, указанного в таблице 13, и температуре позистора, указанной в таблице 13.1. Время срабатывания защиты не превышает 15 с. Исполнительное устройство температурной защиты должно отключать силовую цепь двигателя при достижении сопротивления цепи термодатчиков 2100- 450 Ом.
Сопротивление одного позистора составляет 30 — 140 Ом при 25 градусах C, сопротивление цепи из 3 позисторов составляет 250±160 Ом.
Сопротивление изоляции цепи терморезисторов относительно обмоток статора двигателя при температуре окружающей среды (25 +5)°C составляет:
- В практически холодном состоянии двигателя находится в пределах от 120 до 480 Ом. Измерительное напряжение при контроле не более 2,5 В.
- В номинальном режиме работы двигателей при установившемся тепловом состоянии (температура обмотки двигателя
Источник: http://www.ruselprom.ru/support/biblioteka-polzovatelya/zashchita-elektrodvigatelya/